Contrarian and Forbidden Spacing Strategies on High-Cardinality Features
This chapter is the first “update pack” for the framework of the book. Up to now, we mostly worked with features that have a small number of possible states (for example Odd, which can only be 0, 1, 2, 3, 4, or 5).

Here we focus on features with many different values – high-cardinality columns. A classic example is the column sum (the sum of the five main numbers), which in practice ranges roughly from 15 up to around 240. Another example is the synthetic OSLCS code of a combination, which packs the counts of Odd, Small, Lines and Columns into a five-digit state. Both of these columns have dozens or even hundreds of possible values, which is where spacing really starts to show structure.

We will:
• Define and reuse the spacing engine on any single column.
• Build a “following” version that focuses on what tends to come after the current last value.
• Use these two ingredients to create two sister strategies:
  – A contrarian strategy: best candidates among the non-followers.
  – A forbidden strategy: worst candidates among the non-followers, that we simply try to avoid.
• Backtest both strategies on the OSLCS and sum columns and look at what actually happens in history.

1. Spacing engine on a single column
We pick a single column, for example col = 'sum', and look at the sequence of its values over time:

    v_0, v_1, v_2, …, v_{T-1}.

For each distinct value x that appears in this sequence (say x = 135 for sum), we find all row indices where it occurs:

    i_1, i_2, …, i_k.

From these indices we form the gap list:
• Head gap: i_1.
• Internal gaps: i_2 − i_1, i_3 − i_2, …, i_k − i_{k−1}.
• Tail gap: T − i_k (distance from last appearance to the end of the history window).

From the gap list for this value we compute:
• emf – how many times x appeared (number of hits).
• kath – the last gap (current waiting time since the last hit).
• Percentiles of the gaps (median, P75, P90, P95, P99) and the maximum.
• Pct_score – the percentile of the last gap inside the gap sample for that value.

Large Pct_score means that the current waiting time for that value is large compared to its own past gaps. If you like the “overdue” idea, this is exactly that feeling turned into a number.

To combine frequency and overdue-ness into one score, we use:
• Norm = 100 × emf / (sum of emf over all values).
• Prod = Norm × Pct_score.

So a value gets a high Prod if:
• It appears reasonably often (Norm not negligible), and
• The current waiting time is high relative to its own history (Pct_score high).

The code that drives this engine for one or more columns is:
import numpy as np
import pandas as pd
from scipy import stats


def calculate_statistics_for_columns(df, cols):
    """
    Spacing statistics for tuples of column values.

    For a single column, cols = ['sum'] or ['your_column'].
    Each distinct value v appears in 'column_name' as a 1-tuple: (v,).
    """
    # Build tuple sequence
    column_pairs = list(zip(*[df[col] for col in cols]))
    unique_values = list(set(column_pairs))

    percentile_results = pd.DataFrame()

    # Map each distinct tuple to the list of row indices where it appears
    index_diff_dict = {}
    for v in unique_values:
        index_diff_dict[v] = [
            index for index, value in enumerate(column_pairs) if value == v
        ]

    # For each tuple, compute gap stats and Prod
    for v, idxs in index_diff_dict.items():
        # Gaps: head, internal, tail
        indices_diffs = (
            [idxs[0]]
            + [idxs[i] - idxs[i - 1] for i in range(1, len(idxs))]
            + [len(df) - idxs[-1]]
        )

        stats_dict = {
            'column_name': v,
            'emf': len(indices_diffs) - 1,
            'kath': indices_diffs[-1],
            'median': int(np.percentile(indices_diffs, 50)),
            'P75': int(np.percentile(indices_diffs, 75)),
            'P90': int(np.percentile(indices_diffs, 90)),
            'P95': int(np.percentile(indices_diffs, 95)),
            'P99': int(np.percentile(indices_diffs, 99)),
            'max': int(np.max(indices_diffs)),
            'Pct_score': int(
                stats.percentileofscore(indices_diffs, indices_diffs[-1])
            ),
        }

        percentile_results = pd.concat(
            [percentile_results, pd.DataFrame([stats_dict])],
            ignore_index=True
        )

    # First sort on kath and Pct_score
    percentile_results.sort_values(
        by=['kath', 'Pct_score'],
        ascending=[False, False],
        inplace=True
    )

    # Normalised emf and Prod
    percentile_results['Norm'] = round(
        100 * percentile_results['emf'] / percentile_results['emf'].sum(),
        2
    )
    percentile_results['Prod'] = (
        percentile_results['Norm'] * percentile_results['Pct_score']
    ).astype(float).round(2)

    # Final ranking by Prod (high Prod at top)
    percentile_results = percentile_results.sort_values(
        by='Prod',
        ascending=False
    ).reset_index(drop=True)

    return percentile_results

2. Following stats: who tends to come after whom?
The second ingredient is the following-spacing engine.

Given the same column col, we again look at its values over time. This time we fix our attention on the last observed value in the history window, call it last_val.

We do the following:
1. Find all indices k in the history window where value_k == last_val.
2. For each such k, if k + 1 still lies inside the window, record value_{k+1} as a follower.
3. Collect this follower list and compute spacing stats for these follower values, in the same way as before, using their positions on the original index axis.

This tells us, for the current last value:
• Which values have historically appeared immediately after it.
• How those follower values behave in terms of gaps and Prod.

The code for the following-spacing statistics is:
def calculate_following_statistics_for_columns(df, cols):
    """
    Following-spacing stats:

    Take the last tuple in df[cols], find all past occurrences,
    look at the tuples that came right after those, and compute
    spacing stats for those follower tuples.
    """
    column_pairs = list(zip(*[df[col] for col in cols]))
    last_pair = column_pairs[-1]

    # where does this last_pair appear?
    last_pair_indices = [
        index for index, value in enumerate(column_pairs) if value == last_pair
    ]

    following_pairs = []
    following_indices = []
    for index in last_pair_indices:
        if index + 1 < len(column_pairs):
            following_pairs.append(column_pairs[index + 1])
            following_indices.append(index + 1)

    unique_values = list(set(following_pairs))
    if len(unique_values) == 0:
        # nothing ever followed this pattern
        return pd.DataFrame(columns=['column_name'])

    percentile_results = pd.DataFrame()

    # map each following tuple to indices where it appears as follower
    index_diff_dict = {}
    for v in unique_values:
        index_diff_dict[v] = [
            following_indices[i]
            for i, value in enumerate(following_pairs) if value == v
        ]

    for v, idxs in index_diff_dict.items():
        indices_diffs = (
            [idxs[0]]
            + [idxs[i] - idxs[i - 1] for i in range(1, len(idxs))]
            + [len(df) - idxs[-1]]
        )

        stats_dict = {
            'column_name': v,
            'emf': len(indices_diffs) - 1,
            'kath': indices_diffs[-1],
            'median': int(np.percentile(indices_diffs, 50)),
            'P75': int(np.percentile(indices_diffs, 75)),
            'P90': int(np.percentile(indices_diffs, 90)),
            'P95': int(np.percentile(indices_diffs, 95)),
            'P99': int(np.percentile(indices_diffs, 99)),
            'max': int(np.max(indices_diffs)),
            'Pct_score': int(
                stats.percentileofscore(indices_diffs, indices_diffs[-1])
            ),
        }

        percentile_results = pd.concat(
            [percentile_results, pd.DataFrame([stats_dict])],
            ignore_index=True
        )

    percentile_results.sort_values(
        by=['kath', 'Pct_score'],
        ascending=[False, False],
        inplace=True
    )

    percentile_results['Norm'] = round(
        100 * percentile_results['emf'] / percentile_results['emf'].sum(),
        2
    )
    percentile_results['Prod'] = (
        percentile_results['Norm'] * percentile_results['Pct_score']
    ).astype(float).round(2)

    percentile_results = percentile_results.sort_values(
        by='Prod',
        ascending=False
    ).reset_index(drop=True)

    return percentile_results

3. Survivor pool: values that never followed the last value
With both global spacing stats and following-spacing stats in place, we can define the survivor pool.

At a given time step t, the history window is:
    hist_df = df.iloc[:t, :].

We compute:
• stats_all = calculate_statistics_for_columns(hist_df, [col])
• follow_stats = calculate_following_statistics_for_columns(hist_df, [col])

The rows in follow_stats['column_name'] represent the values that have already appeared as immediate followers of the current last value in the history window. We now exclude those from the global stats and keep everything else:

    survivors = stats_all[~stats_all['column_name'].isin(follow_stats['column_name'])]

This survivor pool contains values that:
• Have full spacing statistics (they exist in the history window), and
• Have never followed the current last value in history.

These are exactly the non-followers that both strategies will work with.

The helper code for this pool is:
def _tuple_to_scalar(t):
    """
    For single-column use, column_name is (value,).
    This helper extracts that scalar.
    """
    if isinstance(t, (tuple, list)) and len(t) == 1:
        return t[0]
    return t


def survivor_stats_excluding_followers(hist_df, col):
    """
    Shared core for both strategies:

    - stats_all: spacing stats on hist_df[col]
    - follow_stats: following stats given last value of hist_df[col]
    - exclude any tuples from stats_all that appear in follow_stats

    Returns:
        survivors: DataFrame with spacing stats for allowed values
    """
    stats_all = calculate_statistics_for_columns(hist_df, [col])
    follow_stats = calculate_following_statistics_for_columns(hist_df, [col])

    if follow_stats is None or follow_stats.empty:
        # no followers recorded, keep all
        survivors = stats_all.copy()
    else:
        exclude = set(follow_stats['column_name'])
        survivors = stats_all[~stats_all['column_name'].isin(exclude)].reset_index(drop=True)

    return survivors

4. Strategy 2 – Contrarian top survivors
We are now ready to define the first strategy.

Contrarian strategy:
“Use the spacing stats on a column, but exclude the values that have already followed the current last value in history. From the remaining values, keep the top max_candidates by Prod and backtest that.”

So this is a contrarian follower strategy:
“I do not want the usual followers of the last values, I want the best candidates among the non-followers.”

Formally, at time t:
1. Build hist_df = df.iloc[:t, :].
2. Compute survivors using survivor_stats_excluding_followers(hist_df, col).
3. Sort survivors by Prod in descending order.
4. Take the first max_candidates values from survivors['column_name'].
5. These values form the candidate set for Strategy 2.

During backtesting, we count a hit for Strategy 2 when the true value at time t lies inside this candidate set.

The candidate builder for Strategy 2 is:
def candidates_strategy2_top_survivors(hist_df, col, max_candidates):
    """
    Strategy 2 (Contrarian strategy):

    - Survivor pool = spacing survivors excluding known followers.
    - Take the *top* max_candidates by Prod.
    - Backtest success later: actual value IS inside this set.
    """
    survivors = survivor_stats_excluding_followers(hist_df, col)
    if survivors.empty:
        return []

    # survivors already sorted by Prod descending from stats_all,
    # but we sort again for safety
    survivors_sorted = survivors.sort_values('Prod', ascending=False)
    selected = survivors_sorted['column_name'].head(max_candidates)
    return [_tuple_to_scalar(t) for t in selected]

5. Strategy 3 – Forbidden tail survivors
The second strategy shares exactly the same survivor pool but takes the opposite part of the ranking.

Forbidden values strategy:
“Use spacing stats on the same column, exclude values that have already followed the current last value, then from the remaining ones take the worst max_candidates by Prod. For the backtest we count success when the next draw’s value is not inside those max_candidates values.”

So instead of “which values do I like?”, this is “which values do I want to avoid?”.

At time t:
1. Build hist_df = df.iloc[:t, :].
2. Compute survivors as before.
3. Sort survivors by Prod in ascending order.
4. Take the first max_candidates values as the forbidden set.
5. During backtesting, we count a success for Strategy 3 when the true value is outside this forbidden set.

The candidate builder for Strategy 3 is:
def candidates_strategy3_forbidden_tail(hist_df, col, max_candidates):
    """
    Strategy 3 (“Forbidden values” strategy):

    - Same survivor pool as strategy 2.
    - Take the *worst* max_candidates by Prod.
    - These values form the 'forbidden set'.
    - Backtest success later: actual value is NOT inside this set.
    """
    survivors = survivor_stats_excluding_followers(hist_df, col)
    if survivors.empty:
        return []

    survivors_sorted = survivors.sort_values('Prod', ascending=True)
    selected = survivors_sorted['column_name'].head(max_candidates)
    return [_tuple_to_scalar(t) for t in selected]

6. Combined backtest engine
To evaluate both strategies side by side, we use a single walk-forward backtest engine. This engine works for any column in the dataset that has a reasonably rich state space. For example:
• sum, which typically spans tens of distinct values (from about 15 up to around 240).
• OSLCS, which encodes Odd, Small, Lines, Columns into a five-digit state.

Parameters of the backtest function:
• df – the full history DataFrame (one row per draw).
• column – the name of the column to backtest on, e.g. 'sum' or 'OSLCS'.
• warmup – the index where we start predicting. For t = warmup we train on draws 0…t−1 and predict draw t.
• max_candidates – how many values we keep for each strategy.

For each t from warmup to the end:
1. Create hist_df = df.iloc[:t, :].
2. Build cand2 = candidates_strategy2_top_survivors(hist_df, column, max_candidates).
3. Build forb3 = candidates_strategy3_forbidden_tail(hist_df, column, max_candidates).
4. Take target_value = df.iloc[t][column].
5. Strategy 2 hit: hit_strategy2 = 1 if target_value in cand2, else 0.
6. Strategy 3 success: success_strategy3 = 1 if target_value not in forb3.
7. Log everything into a results DataFrame.

At the end we derive hit rates and success rates for both strategies, along with the average candidate and forbidden set sizes.

The combined backtest function is:
def backtest_strategies_2_and_3(
    df,
    column,
    warmup=1000,
    max_candidates=30,
    verbose=True
):
    """
    Combined backtest for two spacing-based strategies on a single column.

    Parameters
    ----------
    df : pd.DataFrame
        History dataset (one row per draw).
    column : str
        Name of the column to use (e.g. 'sum').
    warmup : int
        First index used as prediction target.
        History window for step t is df.iloc[:t].
    max_candidates : int
        How many candidate values to keep in each strategy.
    verbose : bool
        If True, print progress every 200 steps.

    Strategies
    ----------
    Strategy 2 (top survivors / contrarian):
        - Survivor pool = spacing survivors excluding known followers.
        - Take the top max_candidates by Prod.
        - Hit2 = 1 if actual value at t is inside this set.

    Strategy 3 (forbidden tail):
        - Same survivor pool.
        - Take the worst max_candidates by Prod.
        - Success3 = 1 if actual value at t is NOT inside this forbidden set.
    """
    if column not in df.columns:
        raise ValueError(f"Column '{column}' not found in DataFrame.")

    n = len(df)
    results = []

    for t in range(warmup, n):
        hist_df = df.iloc[:t, :]

        # Build candidate sets for both strategies
        cand2 = candidates_strategy2_top_survivors(
            hist_df, col=column, max_candidates=max_candidates
        )
        forb3 = candidates_strategy3_forbidden_tail(
            hist_df, col=column, max_candidates=max_candidates
        )

        target_value = df.iloc[t][column]

        hit2 = int(target_value in cand2)                # Strategy 2 success
        in_forbidden3 = int(target_value in forb3)       # Strategy 3 "bad" event
        success3 = int(target_value not in forb3)        # Strategy 3 success

        results.append({
            't': t,
            'target_value': target_value,
            'hit_strategy2': hit2,
            'success_strategy3': success3,
            'in_forbidden_strategy3': in_forbidden3,
            'n_candidates_strategy2': len(cand2),
            'n_forbidden_strategy3': len(forb3),
            'min_candidate2': min(cand2) if cand2 else None,
            'max_candidate2': max(cand2) if cand2 else None,
            'min_forbidden3': min(forb3) if forb3 else None,
            'max_forbidden3': max(forb3) if forb3 else None,
        })

        if verbose and (t - warmup) % 200 == 0:
            print(
                f"[t={t}] {column}={target_value} | "
                f"hit2={hit2}, success3={success3}, "
                f"cand2_first5={cand2[:5]}, forb3_first5={forb3[:5]}"
            )

    res_df = pd.DataFrame(results)

    # Summary metrics
    hit_rate2 = res_df['hit_strategy2'].mean() if len(res_df) > 0 else np.nan
    success_rate3 = res_df['success_strategy3'].mean() if len(res_df) > 0 else np.nan
    in_forbidden_rate3 = res_df['in_forbidden_strategy3'].mean() if len(res_df) > 0 else np.nan
    avg_n2 = res_df['n_candidates_strategy2'].mean() if len(res_df) > 0 else np.nan
    avg_n3 = res_df['n_forbidden_strategy3'].mean() if len(res_df) > 0 else np.nan

    if verbose:
        print("\n=== Backtest summary for strategies 2 and 3 ===")
        print(f"Rows used                 : {len(res_df)} (from index {warmup} to {n-1})")
        print(f"Strategy 2 hit rate       : {hit_rate2:.4f}")
        print(f"Strategy 3 success rate   : {success_rate3:.4f}")
        print(f"Strategy 3 in-forbidden   : {in_forbidden_rate3:.4f}")
        print(f"Avg candidates (strat 2)  : {avg_n2:.2f}")
        print(f"Avg forbidden (strat 3)   : {avg_n3:.2f}")

    return res_df

7. Backtest results for OSLCS
We first apply the combined backtest to the OSLCS column. This column encodes, in a single five-digit number, the structure of a combination in terms of Odd, Small, Lines and Columns. In this experiment we use:
• warmup = 300, so we start predicting from draw index 300.
• max_candidates = 50, meaning Strategy 2 uses 50 top survivor values and Strategy 3 marks 50 forbidden survivor values.

Along the way, the function prints snapshots such as:

[t=300] OSLCS=11530 | hit2=1, success3=1, cand2_first5=[32530, 42530, 33530, 22441, 34431], forb3_first5=[31540, 13520, 42440, 24441, 13431]
[t=400] OSLCS=23431 | hit2=0, success3=1, cand2_first5=[32530, 33430, 23430, 21441, 34440], forb3_first5=[41341, 30430, 3530, 32450, 43421]
[t=500] OSLCS=31431 | hit2=1, success3=1, cand2_first5=[32530, 42530, 22530, 21441, 33430], forb3_first5=[21451, 32531, 43520, 42531, 42550]
[t=600] OSLCS=21331 | hit2=0, success3=1, cand2_first5=[23431, 22540, 23530, 23430, 22441], forb3_first5=[24330, 31332, 2540, 32450, 43520]
[t=700] OSLCS=12520 | hit2=0, success3=1, cand2_first5=[33540, 42530, 22540, 23530, 22441], forb3_first5=[22520, 43520, 32531, 42531, 24432]
[t=800] OSLCS=12430 | hit2=1, success3=1, cand2_first5=[32530, 23540, 23530, 22530, 33540], forb3_first5=[32432, 32420, 45330, 14541, 1540]
[t=900] OSLCS=33540 | hit2=1, success3=1, cand2_first5=[22530, 32530, 33530, 42530, 33430], forb3_first5=[32322, 30440, 41340, 2430, 22341]

Reading one line as an example:

• At t = 300, the observed OSLCS value is 11530.
• Strategy 2 (contrarian top survivors) has hit2 = 1, which means 11530 is inside its candidate set of 50 values.
• Strategy 3 (forbidden tail) has success3 = 1, which means 11530 is outside the forbidden set of 50 values.
• The first few Strategy 2 candidates are [32530, 42530, 33530, 22441, 34431].
• The first few forbidden values are [31540, 13520, 42440, 24441, 13431].

Over the whole backtest window for OSLCS we get the summary:

=== Backtest summary for strategies 2 and 3 ===
Rows used                 : 609 (from index 300 to 908)
Strategy 2 hit rate       : 0.3875
Strategy 3 success rate   : 0.9343
Strategy 3 in-forbidden   : 0.0657
Avg candidates (strat 2)  : 50.00
Avg forbidden (strat 3)   : 50.00

Interpretation for OSLCS:
• Strategy 2 captures the true OSLCS value in its 50-value contrarian candidate set about 38.75% of the time.
• Strategy 3 keeps the true OSLCS value outside its 50 forbidden values about 93.43% of the time.
• The true value lands inside the forbidden set only about 6.57% of the time.

This gives us two complementary ways to look at OSLCS:
• As a predictive corridor (Strategy 2) with around 39% hit rate when we allow 50 candidate OSLCS states.
• As a warning zone (Strategy 3) that we mostly want to avoid, and that history respects roughly 93% of the time.

8. Backtest results for sum
We repeat the same backtest for the sum column. Here sum is the total of the five main numbers of each draw. Again we use warmup = 300, but this time we set max_candidates = 30, because sum already has many distinct values and a 30-value corridor is a reasonable compromise between space reduction and flexibility.

Sample log lines from the backtest:

[t=300] sum=161 | hit2=0, success3=0, cand2_first5=[128, 120, 139, 108, 127], forb3_first5=[184, 64, 125, 63, 179]
[t=400] sum=114 | hit2=1, success3=1, cand2_first5=[106, 117, 127, 120, 158], forb3_first5=[204, 190, 184, 63, 201]
[t=500] sum=163 | hit2=0, success3=0, cand2_first5=[117, 152, 106, 114, 127], forb3_first5=[204, 73, 190, 54, 192]
[t=600] sum=164 | hit2=0, success3=1, cand2_first5=[120, 126, 117, 114, 110], forb3_first5=[73, 190, 178, 213, 43]
[t=700] sum=107 | hit2=0, success3=1, cand2_first5=[128, 133, 117, 106, 126], forb3_first5=[213, 62, 70, 183, 61]
[t=800] sum=121 | hit2=0, success3=1, cand2_first5=[120, 119, 152, 128, 139], forb3_first5=[56, 213, 68, 191, 57]
[t=900] sum=129 | hit2=0, success3=1, cand2_first5=[114, 140, 152, 113, 126], forb3_first5=[68, 191, 57, 213, 62]

Reading one snapshot:

• At t = 400, the observed sum is 114.
• Strategy 2 has hit2 = 1, so 114 is inside the contrarian candidate set of 30 sums.
• Strategy 3 has success3 = 1, so 114 is outside the forbidden set of 30 sums.

Over the entire backtest window for sum we get:

=== Backtest summary for strategies 2 and 3 ===
Rows used                 : 609 (from index 300 to 908)
Strategy 2 hit rate       : 0.3087
Strategy 3 success rate   : 0.8900
Strategy 3 in-forbidden   : 0.1100
Avg candidates (strat 2)  : 30.00
Avg forbidden (strat 3)   : 30.00

Interpretation for sum:
• Strategy 2 catches the true sum inside its 30-value candidate set about 30.87% of the time.
• Strategy 3 keeps the true sum outside its 30 forbidden sums about 89.00% of the time.
• The true sum falls into the forbidden list around 11.00% of the time.

Remember that sum is a high-cardinality feature. In practice you have over a hundred possible sums inside the observed range, so a random 30-sum guess would sit much lower than a 30% hit rate. These contrarian and forbidden corridors do not guarantee anything for the future, but historically they pick out regions of the sum space that behave differently from a flat random pick.

9. How to plug this into the wider framework
This update is fully generic:
• You can apply it to any column in hist_df that has a rich set of possible values.
• You can change warmup and max_candidates to suit your preference.
• You can combine Strategy 2 and Strategy 3 corridors with other filters from previous chapters.

For example, you might:
• Require that the sum of a candidate line lies inside the Strategy 2 corridor for sum.
• Avoid lines whose OSLCS code lies inside the Strategy 3 forbidden set for OSLCS.

From a player’s point of view, the idea is simple: you now have tools that do not just look at raw frequencies, but also at the spacing between hits and at which states tend to follow which. You can lean into the non-followers you like, and you can mark some parts of the state space as “danger zones” that you prefer to skip.

10. Using the strategies for the next real draw
Everything so far was framed in backtest mode, where t runs inside the history. In live mode you have a full hist_df with all past draws up to the latest available date, and you want to form an opinion about the next draw.

The pattern is straightforward:
1. Set hist_df = df (all rows of your current history).
2. Call the candidate builders on hist_df for the column you care about.
3. Use the Strategy 2 candidates as a corridor to aim for.
4. Use the Strategy 3 forbidden set as a zone to avoid.

Here is a small helper that does this and prints both sets:

def get_spacing_candidates_for_next_draw(
    df,
    column,
    max_candidates_strategy2=30,
    max_candidates_strategy3=30
):
    """
    Convenience helper for live use.

    Given a full history df (one row per draw), build:

      - Strategy 2 candidates (top survivors).
      - Strategy 3 forbidden values (tail survivors).

    These apply to the *next* draw after the last row of df.
    """
    if column not in df.columns:
        raise ValueError(f"Column '{column}' not in DataFrame.")

    hist_df = df  # all known draws up to now

    cand2 = candidates_strategy2_top_survivors(
        hist_df, col=column, max_candidates=max_candidates_strategy2
    )
    forb3 = candidates_strategy3_forbidden_tail(
        hist_df, col=column, max_candidates=max_candidates_strategy3
    )

    print(f"Column: {column}")
    print(f"Strategy 2 (contrarian) candidates ({len(cand2)} values): {cand2}")
    print(f"Strategy 3 (forbidden) values ({len(forb3)} values): {forb3}")

    return cand2, forb3


# Example usage for sum and OSLCS on your history df_n:
# cand2_sum, forb3_sum = get_spacing_candidates_for_next_draw(df_n, 'sum', 30, 30)
# cand2_oslcs, forb3_oslcs = get_spacing_candidates_for_next_draw(df_n, 'OSLCS', 50, 50)

